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I Abstract

SI A wake is modelled by a vortex sheet carrying positive and negative circulation. The

sheet's evolution is computed by the vortex-blob method. Initial conditions and circulation

density for the vortex sheet are chosen to simulate some of the wake patterns observed in

the soap-film experiments of Couder et.al.2'3I
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I 1. Introduction

At moderate Reynolds number, the wake behind a bluff body in a streaming flow

forms a regular Kirmin vortex street, consisting of two staggered rows of oppositely-signed

vortices1 . These regular vortex streets have been observed in "natural" experimental situa-

tions, where no explicit forcing has been introduced. Experimentalists have also examined

"forced" wakes, in which the bluff body is subjected to forced oscillations. In particular, Y.

3 Couder and his associates2'3 have investigated the wake behind an oscillating solid cylinder

in a thin soap-film. They have shown that various different vortex street patterns can form

in the cylinder's wake when the forcing frequency is varied. The forced wakes observed by

Couder et. al.2 '3 differ from the classical Kirmin vortex street in that they are dominated

by "vortex-couples", i.e. pairs of counter-rotating vortices which propagate away from the

wake's centerline.

U Even though these experiments were effectively two-dimensional, a computationl study

of the problem would be very ambitious if it were to include the unsteady separation pro-

cess as well as the wake's downstream development. The present paper has a more modest

aim. Recently developed ideas for computing desingularized vortex sheet evolution4 will be

I applied to a spatially periodic model of the experiment. The effect of the unsteady experi-

mental forcing will be simulated in the computation by choosing specific initial conditions

for the vortex sheet. The circulation density will be chosen to simulate a free sinusoidal

wake and the initial vortex sheet shape will be chosen so as to produce vortex-couples. The

aim is to demonstrate that a desingularized vortex sheet model can simulate experimentally

observed wake patterns. The model may therefore be a useful tool to complement analysis

by more detailed fluid models, such as the Navier-Stokes equations.

3 Various types of vortex models and computational vortex methods have been used

to study wakes. For example, the method of contour dynamics has been used to study

IH a model in which the wake is represented by two layers of constant, oppositely-signed

vorticity5 . Point-vortex6 '7 , vortex-blob s'9 '0 and vortex-in-cell methods" have been used to

S study the evolution of two vortex sheets. Modelling a wake by two vortex layers or two

vortex sheets is quite natural because in general, a bluff body has two separation points,

I each of which contributes a shear layer to the wake. However, the experiments of Couder

et. al.2 '3 , and others, suggest that in some instances, a wake can be modelled by a single

3 vortex sheet carrying positive and negative circulation. This, for example, might be the

case when the two separation points on the body are close to one another. Each complete
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I shedding cycle could be split into two parts, circulation predominantly of one sign being

shed during each part. In effect, a single shear layer with circulation density of alternating

sign could be shed into the wake. The present paper deals with a single vortex sheet model

for a wake. Couder and Basdevant2 have performed a numerical study of vortex-couples

3 using a spectral method, and they give references to other numerical work as well.

The desingularized vortex sheet model and the numerical method are reviewed in section

2. Computed results are presented and compared with the experimental wake patterns of

Couder et. al.2'3 in section 3. The results are discussed in section 4.

I 2. Numerical Method

The vortex structure forming the wake is represented by a vortex sheet (x(a, t), y(a, t)),

which is periodic in the Lagrangian variable a. The circulation density along the curve

is defined by a function o,(a). The specific choice of a-(a) depends upon the type of flow

being modelled. In the present computations, a(a) will be chosen to have mean zero over

one period, thereby modelling a wake in which equal amounts of positive and negative

3 circulation are shed in each cycle.

Let G(x, y) denote the Green's function for the Laplace equation in two dimensions.

* The stream function for the flow is expressed as,

O|X Y7 0 = I G(x - x~,ty- y(a, (o-a)a

Velocity components are defined by u = Oy, v = -0., the partial derivatives being carried

I out by analytically differentiating under the integral sign in Eq. (1). The velocity of the

vortex sheet is defined by xt = u , Yt = v; the integrals here are evaluated on the curve and

3 are interpreted as Cauchy principal value integrals. The problem specification is completed

by choosing a circulation density o(a) and an initial shape (x(a, 0), y(a, 0)). This is simply

3 a formulation of the equations governing vortex sheet evolution 12

The calculations presented below use a desingularized periodic Green's function,

|G(xy;S) = Ilog(cosh2ry -cos27x +8 2 ), (2)

I in which S is an artificial smoothing parameter4 . Positive values 5 > 0 diminish the

vortex sheet's short wavelength instability and allow the curve to roll up smoothly. In the

3 computations presented below the value 6 = 0.3 was used. The curv, is discretized by a

finite number of points per wavelength, corresponding to a uniform mesh in the parameter a.

3 The integrals that define the curve's velocity are approximated by the trapezoid rule. The
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ordinary differential equations for the point positions are integrated forward in time by the

fourth order Runge-Kutta method. Points are inserted adaptively as the curve stretches, in

order to maintain spatial resolution' 3 . This is the vortex-blob or desingularization method

for computing vortex sheet roll-up4'' 9.

3. Results

Figures 1-3 show the computed results and compare them to the experimental wa.ke

patterns of Couder et. al.2'3. The experimental wakes were produced in a thin soap-film

by moving a solid cylinder in the plane of the film. The system was forced by oscillating

the solid cylinder at a given frequency. The flow visualization was performed by detecting

changes in the soap-film thickness. In the experiments reproduced below, the downstream

direction is to the left. For the computations, the initial shape (x(a,O),y(a,O)) and cir-

culation density o(a) were taken to be simple patched combinations of a fundamental

sinusoid and a subharmonic. In each case, these functions were chosen so as to simulate

the experimental wake patterns (the specific choices are given in the Figure captions). The

calculations were performed over one spatial period, but four periods are plotted in the

Figures.

The experimental wake shown at the bottom of Figure 1 is "natural" in the sense that

no forcing was explicitly supplied. In this case a regular Kirmin vortex street formed,

consisting of vortices that alternate in sign. The vortices are staggered a small distance

on either side of the wake. The width of the wake grows slowly as a function of distance

downstream from the body. The computational circulation density was taken to be a(a) =

sin 27ra, in order to produce equal strength vortices that alternate in sign. The staggered

3 position of the vortices was obtained by putting a transverse sinusoidal perturbation, in

phase with the circulation density, into the curve's initial shape. The computation develops

in time into a regular vortex street which resembles the experiment.

Couder et. al.'' 3 found that different patterns formed when the cylinder was forced at

the natural shedding frequency (Figure 2) and at a slightly different frequency (Figure 3).

The forced experimental wakes are dominated by vortex-couples, each consisting of a pair

of counter-rotating vortices. In Figure 2, the couples travel away from the wake centerline

on one side, in an oblique upstream direction. The width of the wake increases more rapidly

than in Figure 1. To obtain the vortex-couples, the computation in Figure 2 used the same

circulation density as before, but the initial shape was slightly more involved, containing

both a transverse and a longitudinal perturbation.
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m In Figure 3, the vortex-couples travel away from the centerline on both sides. The width

of the wake increases more rapidly than in the previous cases. The computational circula-

m tion density and initial shape were constructed by patching together two of the functions

used to obtain Figure 2. Again, the computations qualitatively resemble the experiment.

It may be noted in Figure 3a that the curve's initial shape has a slope discontinuity at

a = 0 and at a = 0.5. This singularity however appears to be smoothed out at later times.

4. DiscussionI The desingularized vortex sheet computations shown here used the value 6 = 0.3 for

the smoothing parameter. Previous numerical work on the effect of varying 8 shows that

the curve's large-scale properties, such as the spiral position and size, are only weakly

dependent upon the precise value of 64,9,13. The curve rolls up more quickly and moreI tightly as 6 -- 0, apparently converging to a spiral with an infinite number of turns in the

limit. Similar behaviour has been demonstrated for the vortex-in-cell method applied toI vortex sheet roll-up, where the smoothing is provided by computing the particles' velocity

on an underlying regular grid14 . Rigorous results concerning the limit 6 -+ 0 for vortex

sheets have been obtained15 1 6, although complete justification is not currently available.I None of the computations shown here required more than 4 minutes of cpu time on a

CRAY X-MP/48 computer. Couder et. al.2'3 have observed more disordered wake patterns

m at other forcing frequencies than those reproduced in Figures 1-3. Such patterns would be

more expensive to simulate by the present method.

A vortex-dipole sheet model for a wake has recently been proposed 7 . In that work,

computational vortex-dipoles were used to represent oppositely-signed wake vorticity that

originates in the boundary layers upstream from a separation point. This effect has not

been included here. The positive and negative circulation dealt with in the present work

I is associated with two distinct separation points on a bluff body.

It should be noted that the initial shape and circulation density in each computation was

chosen to give qualitative agreement with the experimental flow visualization. A further

requirement was that the choices be as simple as possible. The actual functions used

were determined by trial and error. The aim was to demonstrate that the desingularized

vortex sheet model has the capability of simulating wake patterns observed in experiment.

The model obviously neglects certain physical mechanisms in the experiment. For example,

these periodic computations do not describe the unsteady separation process and the spatial

growth of the wake. Questions then arise How can such a crude model yield good
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I qualitative agreement with experiment? Can the model be extended to include some of

the neglected physical mechanisms? If so, can one obtain quantitative agreement between

the model and experiment? These questions cannot be answered at present, but they are

worth pursuing. Along these lines, a desingularized model for vortex sheet separation at a

I sharp edge is being developed.
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l Figure Captions

U FIG. I

a) Initial shape x(a, 0) = a, y(a, O) = 0.2 sin 21ra, circulation density o(a) = sin 2ra,

3 smoothing parameter 6= 0.3.

b) Experiment reproduced from Couder and Basdevant2 . With no forcing explicitly

3 imposed, a regular K(rmn vortex street formed.

i FIG. 2

a) Initial shape x(a, 0) = a + 0.1 sin27ra, y(a, 0) = 0.1 sin27ra, circulation density

Ia(a) = sin 27ra, smoothing parameter S = 0.3.

b) Experiment reproduced from Couder and Basdevant 2 . Vortex couples propagate

obliquely away from the centerline on one side. This pattern resulted from forcing

imposed at the natural shedding frequency.I
FIG. 3 FIG{ {a+0.05sin4ira, 0 <a<0.5

a) Initial shape x(a, 0) = a + 0.05 sin 27ra, y(a, 0) = + -

a-0.05sin 47ra, 0.5 < a < 1rsin 47ra, 0 <5 a < 0.53 circulation density a(a) = {-sin 47ra, 0.5 a < 1 ,smoothing parameter 6 = 0.3.

b) Experiment reproduced from Couder and Basdevant 2. Vortex couples propagate

i obliquely away from the centerline on both sides. This pattern resulted from forcing

imposed at slightly other than the natural shedding frequency.
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FIG. 2
Ia) Initial shape x(a,O0) =a + 0.1lsin27ra, y(a,O0) 0. O~sin 2ra, circulation densityS(a) = sin 2;ra, smoothing parameter 8 = 0.3.

b) Experiment reproduced from Couder and Basdevant' . Vortex couples propagate
I obliquely away from the centerline on one side. This pattern resulted from forcing

imposed at the natural shedding frequency.

I 9



I a) .
T=0

* 0.0

I0.0I
I,

I

I

ILaI
0 1 2 .3 4

b) II

U FIG. :3
a) Initial shape x(a, 0) = a + 0.05 sin 27a, y(a, 0) = a + 0.05 sin 47a, 0 < a < 0.5

a- 0.05 sin4-a, 0.5< a < 1
circulation density a(a) = -sin 4ira, 0.5 < a < <05 smoothing parameter 8 = 0.3.

b) Experiment reproduced from Couder and Basdevant'. Vortex couples propagate
obliquely awa y from the centerline on both sides. This pattern resulted from forcing
imposed at slightly other than tbF. natural shedding frequency.10


